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1. INTRODUCTION 

The U.S. Army Research Laboratory (ARL) completed an initial investigation of the flow field within 

a typical test chamber operated by the Army Edgewood Research, Development and Engineering Center 

(ERDEC). The ERDEC test chamber is designed to mix compressor-driven airflow with gas/solid effluent 

from a test article placed inside the chamber. An example of such a test article is a smoke generator, or 

smoke pot, commonly used on the battlefield to provide a means of obscurant During the test, the 

air/effluent flow field is exhausted from the test chamber for analysis. In order to simulate this flow, the 

ARL applied computational fluid dynamics (CFD) codes that include multispecies chemical kinetics as 

well as multiphase (paniculate) submodels. These codes were developed at ARL to numerically solve the 

Navier-Stokes equations and simulate the chemically reacting, multiphase flow field in gun propulsion 

systems. This code has been used successfully for other applications at ARL (Nusca 1989, 1991,1993). 

Application of the code to the present study involved generating a computational mesh that covered 

the chamber interior as well as specifying proper boundary conditions on the chamber walls, chamber top 

(air inflow), chamber exit (outflow), and test article (effluent outflow), as depicted in Figure 1. The 

governing equations, boundary conditions, and solution method are outlined in this report. Numerical 

solutions of the gas flow and effluent concentration distributions in the test chamber were generated for 

operating times up to 4.5 min. Graphical results with discussion are presented in this report. Numerical 

simulations reveal that certain values of chamber through-flow induce flow patterns within the chamber 

that are dominated by vortices. This flow pattern increases the effluent residence time in the chamber as 

well as the mixing of gas/particulate from the test article with air. The test article effluent jet feeds 

effluent into this vortical motion, and only that flow that is trapped near the chamber floor is drawn out 

of the chamber. Pockets of high effluent concentration can form in the chamber. 

2. GOVERNING EQUATIONS 

For purposes of producing a timely initial investigation, the cylindrical test chamber was modeled as 

two-dimensional (2D). The governing equations are written in Cartesian coordinates with velocity 

components u and v for the x (along chamber floor) and y (along chamber height) directions, respectively 

(see Figure 1). The Reynolds-Averaged Navier-Stokes (RANS) equations describe the 2D reacting gas 

flow (N species mixture) in the chamber given conditions at the boundaries of the geometry. These partial 

differential equations describe the time (t) evolution of the dependent variables of velocity (u, v), pressure 

1 



(p), mixture density (p), species mass fraction (a^ for i = 1 to N species), internal energy (e), temperature 

(T, derived from energy), and viscous shear stresses (t). 

9W + 3(FI-OI) + 3(F2-G2) = Q 

~öT 3x 3y 
(1) 

w = [e, p, pu, pv, polf ..., pop^] 

Fi = (e+p) u, pu, puz+p, puv, pUC! pU^N-l 

F2 =  (e+p) v, pv, pvu, pv2+p, pvoj, .... PVON^J 

Q = [0, 0, 0, 0, £k <Dlk, ..., JX Q(N_1)k] . 

Gl- ^^+EiP
D(hi-hN)-^+^Xx+VXxy.O,Txx,txrpD__,...,pD_5_ 

G2 = ^-EiPDlhi-h^—i+UTy^VTyy.O.V.VpD-- ß D _^_ 
ay ay ay 

The shear stress terms are given by 

au    2pm 
\x = 2JV "ar    3 

fdu    dv] ,     av_2Pmf3u    av") f 9u    dv^ 
"ar+"a7/ yy   Pm*a7~3"rar 77 jv-^ -37 -^ 

y v v 

In these equations, Oj and (Oj are the mass fraction and chemical production terms for the i* species. For 

the present application, finite-rate chemical production terms were not used. Chemical reaction was 

modeled as an infinitely fast, one-step, unidirectional (i.e., forward) reaction of smoke pot effluent (i = 1) 

and air (i = 2) to form product (i = 3) for stoichiometric air/effluent ratio of 0.17 and effluent density 

above 50 g/m3. The reaction temperature was taken as 680° C. 



Effluent + Air -> Product 

M, 
«-k, 

Ml   M2 ' M2 

-k 
poj po2    co3 

- +k, 
po: pa2 

kf = 1 x 1020 . 

The temperature dependence of the species viscosity, pj, and thermal conductivity, iq, can be modeled 

using Sutherland's law (White 1974), 

_Pi_ 

Poi 

\3/2 

V   °*J 
T + S„ 

(        \*/2 

T 
\0KJ 

T + S„ 

The terms p0, T0, and S can vary with species but were assumed to be constant with values of Sj, = 199 R, 

T0 = 491.6 R, p0 = 0.1716 mP, SK = 350 R, T0K = 491.6 R, K0 = 0.0139 BTU/h-ft-R. The mixture 

viscosity and thermal conductivity (mixture quantities are denoted by subscript m) are determined using 

Wilke's law (Wilke 1950), denoting f as p or K, 

f^EihMEjX^)-1^^^ 1 

ft 
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1 + 
Vl/2 

1  + 

f    \ 
f: 

v h 

1/2 
MJ 

t
Mi, V      J 

where Xj and Iv^ are the mole fraction (X; = po/M;) and molecular weight of the f1 species, respectively 

(N^ = 97.94, M2 = 28.8, and M3 = 63.37 g/mole). Fick's law (White 1974) is used to relate the mixture 

diffusivity to the mixture viscosity through the Schmidt number, Sc = p^p D), assumed unity. The 

specific heat at constant pressure of each species (per mass) is generally given by the following fourth- 

order polynomial curve fit (Drummond, Rogers, and Hussaini 1987): 

Ji = A: + B:T + C:T2 + DJ3 + EjT4. 
R_ 1        1 1 1 

For the present study,  c    was  assumed  constant  with values  cpl = 0.2878,  cp2 = 0.238,  and 

c 3 = 0.1277 cal/g°C. The mixture pressure (equation of state), enthalpy, total energy per unit volume, 



and ratio of specific heats are given by (R„ is the universal gas constant and AHfi is the heat of formation 

for species i) 

P = EiPi = pTR„Ei1^. 

h = Ei^iJTCpidT + Ei^iAHfi. 

e = ^+p(uW)+EiPOiAHfi) 
Y-l 

Y=l 

1-1 

RuEi h/Mi) 
-1 

and 

S„'T^°'/TcPi
<1T 

An algebraic turbulence model (Bradshaw, Cebeci, and Whitelaw 1981) was used. In this model, the 

eddy viscosity, pt, is computed assuming that the viscous layer consists of an inner and an outer 

component. The inner region follows the Prandtl mixing length formulation based on a prescribed 

characteristic length scale, L, a boundary layer intermittency factor, e (having a value of 0 for laminar, 

1 for turbulent flows, and a function of x for transitional flows), the displacement thickness of the layer, 

8, and a constant, a. 

= T 2wii du (ut).      = L2y||™ ||.0:*y*yc. V   winner a« c 
dy 

Moalir-«».ll*lle.yc*y*y. 



Here, yc, is a prescribed, small distance from the solid boundary, and ye is the edge of the viscous layer. 

Further details can be obtained from Bradshaw, Cebeci, and Whitelaw (1981). The fluid viscosity is then 

u = pm(T) + pt, where um(T) is obtained using Sutherland's law and Wilke's law. 

3. BOUNDARY CONDITIONS AND INITIAL CONDITIONS 

The boundaries of the test chamber (see Figure 1) are the air inlet at the top (roof), the exit port on 

the chamber floor (connected by ducts to the wind tunnel fan), and the vertical walls. The smoke pot is 

placed on the chamber floor, near the chamber exit port. Since the governing equations are elliptic (low- 

speed flow), conditions along these boundaries must prescribe values of the dependent variables, the 

gradient of the dependent variables in the boundary-normal direction, or an algebraic relation which 

connects the values of the dependent variables to the normal component of velocity. 

At the air inlet, x-direction profiles of all dependent variables, p, u, v, o, T, and p, are specified. It 

is assumed that the flow at the inlet consists of air and that convection/diffusion of effluent to the chamber 

top is not permitted to exit the chamber. By mass conservation, the inlet flow velocity was specified as 

u = .062 ft/s, and a parabolic-shaped profile was assumed. 

The exit port velocity was specified as u = 2.96 ft/s (5,380 1/min) with a parabolic-shaped profile. 

Boundary-normal gradients of all dependent variables at the exit plane are zero. Mass that exits the port 

is not assumed to reenter. 

The no-slip/no-penetration condition (u = v = 0) is applied to the solid chamber and smoke pot walls. 

The walls are assumed to be adiabatic (i.e, normal derivative of T set to zero). The normal gradient of 

all mass fractions, dafln, are also set to zero. 

The top of the smoke pot was assumed to be a constant mass flux source of effluent with u = 12.7 ft/s, 

T = 320° C, Ml = 97.94 g/mole, and cp = 0.2878 cal/g° C. 

4. COMPUTATIONAL ALGORITHM 

Equation (1) can be reduced to a successive-substitution formula for a general dependent variable, W, 

at each node on the computational grid.  Central finite-differences are used for the diffusive (arrays Gj 



and G^ and source terms (array ß) and upwind differences for the convective terms (arrays Fj and Fj). 

Using upwind differencing in the species conservation equations (i.e., W = po;) reduces the occurrence 

of negative species mass fractions in mixing layers. The resulting system of equations for the entire grid 

is solved using a Gauss-Seidel relaxation scheme. Each iteration cycle is made up of J subcycles, where 

J is the number of equations being considered. In each subcycle, grid points are scanned row by row, and 

a single variable is updated. When all subcycles are completed, a new iteration cycle in which the values 

of the variables from the latest iteration are immediately used is started. This is consistent with the 

Gauss-Seidel methodology. Convergence is satisfied when the greatest relative change in any flow 

variable is smaller than a prescribed tolerance. See Nusca (1989, 1991) for further details. 

5.   RESULTS AND DISCUSSION 

Figure 1 shows the computational grid used to discretize the chamber interior. The number of grid 

nodes in the x and y directions are 75 and 50, respectively (3,750 nodes total). Grid node clustering was 

used to resolve flow gradients near the smoke pot. 

The simulation was run for approximately 1 min to establish steady flow in the chamber before the 

smoke pot was activated. Figure 2 shows the streamline (contour lines of constant stream function) 

patterns. Note that a large counterclockwise vortex resides to the upper left of the smoke pot (established 

by flow from the chamber inlet that must turn at the chamber floor) and that a smaller clockwise vortex 

resides over the smoke pot (established by flow rising in the vertical direction that is turned by the 

chamber inlet flow at the top). 

Figures 3, 4, 5, and 6 show the flow streamline pattern after 1, 2, 3, and 4 min of smoke pot 

operation, respectively. Initially, flow from the smoke pot rises toward the chamber top, establishing two 

small vortices near the pot, rotating in opposite directions. At later times, the flow settles into a large 

counterclockwise vortex offset from the centerline of the chamber and fed by the smoke pot jet. Flow 

entrained in the chamber exit port is limited to that trapped near the chamber floor. Figure 7 shows the 

flow streamline pattern at 4.5 min, which is 0.5 min after the smoke pot has ceased operation. The vortex 

has reduced in size and is centered between the vertical chamber walls. 

Figures 8-12 and Figures 13-17 show contours of smoke pot effluent mass fraction, <s{, (mass of 

effluent/total mass) and effluent density (product of mass fraction and mixture density), respectively, at 



times 1-4.5 min. At early times, effluent concentrations are high in the smoke pot jet. At later times, 

the effluent is entrained in the chamber vortex and diffused to smaller concentrations. Even at later times, 

pockets of high concentration (50 g/m3 or greater) can be noted. The flow pattern is not greatly disturbed 

by the chamber exit port on the floor. Figures 12 and 17 show the effluent mass fraction and density at 

4.5 min, 0.5 min after flow from the smoke pot has been stopped. The chamber vortex has swept effluent 

into the vicinity of the smoke pot where it becomes trapped at large concentration levels. 

6.   CONCLUSIONS 

Due to the low-vertical flow velocity (0.06-2.7 ft/s) through the chamber induced by the small 

chamber exit port on the floor, the natural flow pattern in the chamber is one that is dominated by rotating 

vortices. This pattern increases the flow residence time in the chamber and mixes gases from the smoke 

pot with air (similar to a "well-stirred reactor"). The smoke pot jet feeds effluent into this vortical motion, 

with only that flow that is trapped near the chamber floor exiting the chamber. As a result, effluent is 

allowed to form pockets of high concentration that may chemically react with the fresh-air supply fed 

from the chamber inlet (i.e, top). After the smoke pot ceases operation, the chamber vortex concentrates 

effluent near the chamber wall. A larger chamber exit port and forced exit velocity (controlled by the 

wind tunnel fan) may assist in breaking these vortices and evacuating the chamber at the higher rate. The 

increased chamber through-flow should be sufficient to turn the smoke pot jet toward the exit. Numerical 

simulations aimed at predicting this effect have not been pursued. 

The numerical simulations, results, discussions, and conclusions reached in this report are subject to 

the assumptions used in the model and the information supplied to the model in the form of boundary 

conditions. While the confidence level in the model is high (based on performance in simulating other 

problems), further studies that test model sensitivity to the supplied boundary conditions should be 

conducted. A full three-dimensional simulation should be conducted to model the perforated chamber top 

wall, in addition to three discrete smoke pot exit holes as well as flow obstructions (i.e., pipes) in the 

chamber. These are thought to represent secondary effects in the simulation of unknown final effect on 

the results. 
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LIST OF SYMBOLS 

CP = specific heat capacity, constant p 

cv = specific heat capacity, constant volume 

D = mass diffusion coefficient 

e = specific total internal energy 

F,G = flux vectors 

h = molar specific enthalpy 

L = Prandtl mixing length 

M = molecular weight 

N = total number of species 

P = static pressure 

R = specific gas constant, (y-l)cJy 

Ru = universal gas constant, R M,,, 

Sc = Schmidt Number, Un/p D 

t = time 

T = static temperature 

u = axial velocity 

V = radial velocity 

W = dependent variable vector 

x, y = Cartesian coordinates 

X = species mole fraction 

Greek Symbols 

Y = ratio of specific heats, cJcv 

AHf = enthalpy of formation 

8 = boundary layer displacement thickness 

e = boundary layer intermittency factor 

K = heat transfer coefficient 

u = molecular viscosity 
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p = density 

o = species mass fraction 

x = shear stress tensor 

a = chemical production term 

Cl = source term vector 

Subscripts 

e edge of the viscous 

i = i* species 

m = mixture quantity 

P = constant pressure 

t = turbulence quantity 

V = constant volume 

X = x-direction 

y = y-direction 
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